28 research outputs found

    Planificación Robusta de Líneas de Metro y Cercanías

    Get PDF
    En planificación estratégica de los sistemas de metro y cercanías, se considera por una parte el diseño de la red y por otro la asignación del material rodante y de las tripulaciones. En planificación táctica a partir de la solución óptima estratégica, se establece la planificación de las líneas y los horarios. La planificación estratégica de las líneas de metro y cercanías se plantea el establecimiento de las estaciones y de las vías (túneles en su caso) considerando un conjunto de alternativas de forma que se satisfaga la demanda, dentro de las limitaciones de un presupuesto dado, pero de forma que se atienda una demanda que tiene otros modos de viaje posibles, y para que la red esté formada por elementos que permitan la posterior definición de líneas. En el diseño de la red no se tiene en cuenta la capacidad del sistema y consecuentemente la demanda es tenida en cuenta de forma binaria. Marín 2007

    Airport Taxi Planning: Lagrangian Decomposition

    Get PDF
    The airport taxi planning (TP) module is a decision tool intended to guide airport surface management operations. TP is defined by a flow network optimization model that represents flight ground movements and improves aircraft taxiing routes and schedules during periods of aircraft congestion. TP is not intended to operate as a stand‐alone tool for airport operations management: on the contrary, it must be used in conjunction with existing departing and arriving traffic tools and overseen by the taxi planner of the airport, also known as the aircraft ground controller. TP must be flexible in order to accommodate changing inputs while maintaining consistent routes and schedules already delivered from past executions. Within this dynamic environment, the execution time of TP may not exceed a few minutes. Classic methods for solving binary multi‐commodity flow networks with side constraints are not efficient enough; therefore, a Lagrangian decomposition methodology has been adapted to solve it. We demonstrate TP Lagrangian decomposition using actual data from the Madrid‐Barajas Airpor

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation

    Robust rolling stock in rapid transit network

    Get PDF
    This paper focuses on the railway rolling stock circulation problem in rapid transit networks, in which frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The main complicating issue is the fact that the available capacity at depot stations is very low, and both capacity and rolling stock are shared between different train lines. This forces the introduction of empty train movements and rotation maneuvers, to ensure sufficient station capacity and rolling stock availability. However, these shunting operations may sometimes be difficult to perform and can easily malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operation will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Critic trains, defined as train services that come through stations that have a large number of passengers arriving at the platform during rush hours, are also introduced. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results of the model, achieved in approximately 1 min, have been received positively by RENFE planner

    Diseño de Servicios Auxiliares de Líneas de autobuses en interrupciones de metro y cercanías

    Get PDF
    En la ponencia se aborda el problema del soporte de líneas auxiliares de autobús en el caso de interrupción de servicio de los servicios de metro y de trenes de cercanías en redes de transporte de ámbito urbano y/o metropolitano. Las líneas de metro y de cercanías permiten transportar enormes cantidades de viajeros en las áreas metropolitanas y en las grandes ciudades de forma efectiva y sostenible medioambientalmente. De hecho, constituyen la columna vertebral del sistema de transporte urbano y posibilitan una gran parte de las actividades humanas en estos entornos. Es por tanto así que la confianza de los usuarios en estos sistemas de transporte resulta clave tanto para la economía como para la sostenibilidad y que un factor clave para el sostenimiento de dicha confianza es la regularidad de estos servicios de transporte

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation

    Combining robustness and recovery in rapid transit network design

    Get PDF
    When designing a transport network, decisions are made according to an expected value for network state variables, such as infrastructure and vehicle conditions, which are uncertain at a planning horizon of up to decades. Because disruptions, such as infrastructure breakdowns, will arise and affect the network on the day of operations, actions must be taken from the network design. Robust network designs may be implemented but they are extremely expensive if disruptions do not realise. In this paper, we propose a novel approach to the network design problem where robustness and recovery are combined. We look for the trade-off between efficiency and robustness accounting for the possibility of recovering from disruptions: recoverable robust network design. Computational experiments drawn from fictitious and realistic networks show how the presented approach reduces the price of robustness and recovery costs as compared to traditional robust and non-robust rapid transit network design approaches

    Integration of Timetable Planning and Rolling Stock in Rapid Transit Networks

    Get PDF
    The aim of this paper is to propose an integrated planning model to adequate the offered capacity and system frequencies to attend the increased passenger demand and traffic congestion around urban and suburban areas. The railway capacity is studied in line planning, however, these planned frequencies were obtained without accounting for rolling stock flows through the rapid transit network. In order to provide the problem more freedom to decide rolling stock flows and therefore better adjusting these flows to passenger demand, a new integrated model is proposed, where frequencies are readjusted. Then, the railway timetable and rolling stock assignment are also calculated, where shunting operations are taken into account. These operations may sometimes malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operations will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Swapping operations will also be ensured using homogeneous rolling stock material and ensuring parkings in strategic stations. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results show that through this integrated approach a greater robustness degree can be obtaine

    Smooth and controlled recovery planning of disruptions in rapid transit networks

    Get PDF
    This paper studies the disruption management problem of rapid transit rail networks. We consider an integrated model for the recovery of the timetable and the rolling stock schedules. We propose a new approach to deal with large-scale disruptions: we limit the number of simultaneous schedule changes as much as possible, and we control the length of the recovery period, in addition to the traditional objective criteria such as service quality and operational costs. Our new criteria express two goals: the recovery schedules can easily be implemented in practice, and the operations quickly return to the originally planned schedules after the recovery period. We report our computational tests on realistic problem instances of the Spanish rail operator RENFE and demonstrate the potential of this approach by solving different variants of the proposed model

    Column Generation Algorithms for Nonlinear Optimization II: Numerical Investigations

    Get PDF
    García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment mode
    corecore